Section 4.2: Exponential Functions

Video 1

An exponential function is a function of the form $f(x) = a^x$ where a > 0 and $a \neq 1$.

1) Let $f(x) = 3^x$. Find the following.

a) f(4) b) f(1) c) f(0)

d)
$$f(-2)$$
 e) $f\left(\frac{3}{2}\right)$ f) $f(1.78)$

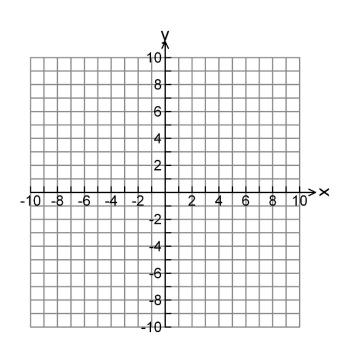
The graph of an exponential function $f(x) = a^x$ is increasing over its entire domain $(-\infty,\infty)$.

The range of the function is $(0,\infty)$.

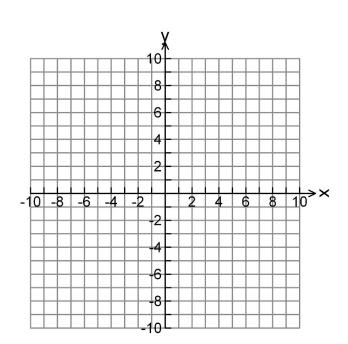
It has a horizontal asymptote on the *x*-axis (y = 0).

It passes through the points
$$\left(-1,\frac{1}{a}\right)$$
, $\left(0,1\right)$, and $\left(1,a\right)$.

2) Graph $f(x) = 3^x$.



3) Graph $f(x) = 2^{x-3} - 2$.



4) Solve.

a)
$$4^x = \frac{1}{64}$$

b) $5^x = 625$

d) $4^{x+5} = 8^{2x-1}$

c) $3^{2x-3} = 9^{3x+1}$

Solve.

Solve.

e) $x^{2/3} = 36$

f) $x^{3/2} - 1 = 26$

Compound Interest Formula

$$A = P\left(1 + \frac{r}{n}\right)^{n \cdot t}$$

A: Balance after t years

P: Principal

r: Annual interest rate (percentage expressed as a decimal)

n: Number of times interest is compounded per year

t: Time, in t=years

5) If \$5000 is invested at 3% interest, compounded monthly, what will the balance be after 10 years?

6) How much needs to be invested at 6% annual interest, compounded quarterly, to reach a balance of \$1000 in 5 years?

7) What interest rate is needed to double the principal of \$3000 in 4 years if compounding is annually?

The number $e \approx 2.71828$ is often called the *natural base* or *Euler's number*.

e is the limit of the expression $\left(1+\frac{1}{n}\right)^n$ as $n \to \infty$.

This number appears over and over again in STEM fields.

Formula for Continuous Compounding

 $A = P \cdot e^{r \cdot t}$ A: Balance after t years
P: Principal
r: Annual interest rate (percentage expressed as a decimal)
t: Time, in t=years

8) If \$5000 is deposited in an account paying 9% interest compounded continuously for 30 years, find the balance.