Section 4.2: Exponential Functions

Video 1

An exponential function is a function of the form $f(x)=a^{x}$ where $a>0$ and $a \neq 1$.

1) Let $f(x)=3^{x}$. Find the following.
a) $f(4)$
b) $f(1)$
c) $f(0)$
d) $f(-2)$
e) $f\left(\frac{3}{2}\right)$
f) $f(1.78)$

The graph of an exponential function $f(x)=a^{x}$ is increasing over its entire domain $(-\infty, \infty)$. The range of the function is $(0, \infty)$.

It has a horizontal asymptote on the x-axis $(y=0)$.
It passes through the points $\left(-1, \frac{1}{a}\right),(0,1)$, and $(1, a)$.
2) Graph $f(x)=3^{x}$.

3) Graph $f(x)=2^{x-3}-2$.

Video 2
4) Solve.
a) $4^{x}=\frac{1}{64}$
b) $5^{x}=625$

Solve.
c) $3^{2 x-3}=9^{3 x+1}$
d) $4^{x+5}=8^{2 x-1}$

Video 3
Solve.
e) $x^{2 / 3}=36$
f) $x^{3 / 2}-1=26$

Video 4
Compound Interest Formula

$$
A=P\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

A: Balance after t years
P: Principal
r : Annual interest rate (percentage expressed as a decimal)
n : Number of times interest is compounded per year
t : Time, in $\mathrm{t}=$ years
5) If $\$ 5000$ is invested at 3% interest, compounded monthly, what will the balance be after 10 years?

Video 5

6) How much needs to be invested at 6\% annual interest, compounded quarterly, to reach a balance of \$1000 in 5 years?

Video 6

7) What interest rate is needed to double the principal of $\$ 3000$ in 4 years if compounding is annually?

Video 7

The number $e \approx 2.71828$ is often called the natural base or Euler's number.
e is the limit of the expression $\left(1+\frac{1}{n}\right)^{n}$ as $n \rightarrow \infty$.
This number appears over and over again in STEM fields.

Formula for Continuous Compounding

$$
A=P \cdot e^{r \cdot t}
$$

A : Balance after t years
P: Principal
r : Annual interest rate (percentage expressed as a decimal)
t : Time, in t=years
8) If $\$ 5000$ is deposited in an account paying 9% interest compounded continuously for 30 years, find the balance.

